鈦合金:
是以鈦為基加入適量其他合金元素組成的合金。耐海水腐蝕性優異。
鈦是20世紀50年代發展起來的一種重要的結構金屬,鈦合金因具有強度高、耐蝕性好、耐熱性高等特點而被廣泛用于各個領域。世界上許多國家都認識到鈦合金材料的重要性,相繼對其進行研究開發,并得到了實際應用。20世紀50~60年代,主要是發展航空發動機用的高溫鈦合金和機體用的結構鈦合金,70年代開發出一批耐蝕鈦合金,80年代以來,耐蝕鈦合金和高強鈦合金得到進一步發展。鈦合金主要用于制作飛機發動機壓氣機部件,其次為火箭、導彈和高速飛機的結構件。
鈦合金是以鈦為基礎加入其他元素組成的合金。鈦有兩種同質異晶體:882℃以下為密排六方結構α鈦,882℃以上為體心立方的β鈦。鈦合金材料乃為提高航空機具飛行性能而開發的高性能材料,隨著工業技術及科技的進步及人們消費能力的提升,其應用領域也由早期的航太工業逐漸擴展至其他領域,諸如船艇、汽車、運動休閑器材及生醫器材等行業,與人類的關系越來越密切;隨著鈦合金應用普及化之后所必須面臨的問題,則是如何克服鈦合金各種加工技術的難題。
京都鈦及鈦合金的合金理論及分類:
鈦金屬可分為純鈦、α合金、α+β合金及β合金四大類。純鈦在常溫為HCP(Hexagonal Close-Packed)晶格結構(α相),在885℃左右變態成體心立方BCC(Body-Centered Cubic)結構(β相),此溫度稱為β變態點。在純鈦中添加不同合金元素及不同添加量會改變β變態點位置,造成α+β兩相區的出現。
經合金添加后之鈦合金,在常溫為單一α相者稱α合金,在常溫為α+β相者稱為α+β合金,在常溫為β相者為稱為β合金。
(1) α 合金
α合金為α相安定元素及中性元素固溶于α相中所形成的單相合金,以Ti-5Al-2.5Sn最具代表性,此類合金高、低溫性能安定,延性及耐潛變性均佳。
(2) α+β 合金
α+β合金中,α及β相的含量受α安定元素及β安定元素的影響極大,在性能上亦有顯著不同。 β相含量少則合金行為類似α合金,反之α相含量少則合金行為類似β合金。 α+β合金中最具代表性的是Ti-6Al-4V。 β相含量較多者有Ti-6Al-6V-2Sn及Ti-6Al-2Sn-4Zr-6Mo等。 Ti-6Al-4V之用量占所有鈦合金用量的70%左右。
(3) β 合金
β合金在常溫下為準安定的體心立方堆積(BCC)結構,為單一β相合金。此類合金之冷間加工性較α+β合金為佳,時效硬化處理后抗拉強度可達150kgf/mm2,降伏強度可達140 kgf/mm2。具代表性的此類合金有Ti-15V-3Cr-3Su-3Al、Ti-10V-2Fe-3Al及Ti-13V-11Cr-3Al等。
鈦及鈦合金的應用:
早期鈦合金之開發主要是用于飛機零組件上,現今則因工業科技的進步與經濟能力的提升,鈦及鈦合金的應用除了仍延續早期的航太、國防、石化、電廠工業之外更擴及汽機車、自行車工業、醫療器材零組件、運動休閑用品及建筑景觀等行業。
京都金屬產鈦合金管是利用鈦合金制作的管子,鈦合金按組織可分三類。(1鈦中加入鋁和錫元素。2鈦中加入鋁鉻鉬釩等合金元素。3鈦中加入鋁和釩等元素。)它們具有較高的力學性能、優良的沖壓性能,并可進行各種形式的焊接,焊接接頭強度可達基體金屬強度的90%,且切削加工性能良好。鈦管對氯化物、硫化物和氨具有較高的耐蝕性能。鈦在海水中的耐蝕性比鋁合金、不銹鋼、鎳基合金還高。鈦耐水沖擊性能也較強。
鈦合金主要用于制作飛機發動機壓氣機部件,其次為火箭、導彈和高速飛機的結構件。60年代中期,鈦及其合金已在一般工業中應用,用于制作電解工業的電極,發電站的冷凝器,石油精煉和海水淡化的加熱器以及環境污染控制裝置等。鈦及其合金已成為一種耐蝕結構材料。此外還用于生產貯氫材料和形狀記憶合金等。
中國于1956年開始鈦和鈦合金研究;60年代中期開始鈦材的工業化生產并研制成TB2合金。
鈦合金與其他金屬材料相比,有下列優點:
①比強度(抗拉強度/密度)高(見圖),抗拉強度可達100~140kgf/mm2,而密度僅為鋼的60%。
②中溫強度好,使用溫度比鋁合金高幾百度,在中等溫度下仍能保持所要求的強度,可在450~500℃的溫度下長期工作。
③耐蝕性好,在大氣中鈦表面立即形成一層均勻致密的氧化膜,有抵抗多種介質侵蝕的能力。通常鈦在氧化性和中性介質中具有良好的耐蝕性,在海水、濕氯氣和氯化物溶液中的耐蝕性能更為優異。但在還原性介質,如鹽酸等溶液中,鈦的耐蝕性能較差。
④低溫性能好,間隙元素極低的鈦合金,如TA7,在-253℃下還能保持一定的塑性。
⑤彈性模量低,熱導率小,無鐵磁性。
6.硬度高。
7.沖壓性差,熱塑性良好。
熱處理 鈦合金通過調整熱處理工藝可以獲得不同的相組成和組織。一般認為細小等軸組織具有較好的塑性、熱穩定性和疲勞強度;針狀組織具有較高的持久強度、蠕變強度和斷裂韌性;等軸和針狀混合組織具有較好的綜合性能。
常用的熱處理方法有退火、固溶和時效處理。退火是為了消除內應力、提高塑性和組織穩定性,以獲得較好的綜合性能。通常α合金和(α+β)合金退火溫度選在(α+β)—→β相轉變點以下120~200℃;固溶和時效處理是從高溫區快冷,以得到馬氏體α′相和亞穩定的β相,然后在中溫區保溫使這些亞穩定相分解,得到α相或化合物等細小彌散的第二相質點,達到使合金強化的目的。通常(α+β)合金的淬火在(α+β)—→β相轉變點以下40~100℃進行,亞穩定β 合金淬火在(α+β)—→β相轉變點以上40~80℃進行。時效處理溫度一般為450~550℃。此外,為了滿足工件的特殊要求,工業上還采用雙重退火、等溫退火、β熱處理、形變熱處理等金屬熱處理工藝。
pttfx/al; color:black'>Ti-6Al-4V。 β相含量較多者有Ti-6Al-6V-2Sn及Ti-6Al-2Sn-4Zr-6Mo等。 Ti-6Al-4V之用量占所有鈦合金用量的70%左右。京都金屬產鈦合金管是利用鈦合金制作的管子,鈦合金按組織可分三類。(1鈦中加入鋁和錫元素。2鈦中加入鋁鉻鉬釩等合金元素。3鈦中加入鋁和釩等元素。)它們具有較高的力學性能、優良的沖壓性能,并可進行各種形式的焊接,焊接接頭強度可達基體金屬強度的90%,且切削加工性能良好。鈦管對氯化物、硫化物和氨具有較高的耐蝕性能。鈦在海水中的耐蝕性比鋁合金、不銹鋼、鎳基合金還高。鈦耐水沖擊性能也較強。
鈦合金主要用于制作飛機發動機壓氣機部件,其次為火箭、導彈和高速飛機的結構件。60年代中期,鈦及其合金已在一般工業中應用,用于制作電解工業的電極,發電站的冷凝器,石油精煉和海水淡化的加熱器以及環境污染控制裝置等。鈦及其合金已成為一種耐蝕結構材料。此外還用于生產貯氫材料和形狀記憶合金等。
中國于1956年開始鈦和鈦合金研究;60年代中期開始鈦材的工業化生產并研制成TB2合金。
鈦合金與其他金屬材料相比,有下列優點:
①比強度(抗拉強度/密度)高(見圖),抗拉強度可達100~140kgf/mm2,而密度僅為鋼的60%。
②中溫強度好,使用溫度比鋁合金高幾百度,在中等溫度下仍能保持所要求的強度,可在450~500℃的溫度下長期工作。
③耐蝕性好,在大氣中鈦表面立即形成一層均勻致密的氧化膜,有抵抗多種介質侵蝕的能力。通常鈦在氧化性和中性介質中具有良好的耐蝕性,在海水、濕氯氣和氯化物溶液中的耐蝕性能更為優異。但在還原性介質,如鹽酸等溶液中,鈦的耐蝕性能較差。
④低溫性能好,間隙元素極低的鈦合金,如TA7,在-253℃下還能保持一定的塑性。
⑤彈性模量低,熱導率小,無鐵磁性。
6.硬度高。
7.沖壓性差,熱塑性良好。
熱處理 鈦合金通過調整熱處理工藝可以獲得不同的相組成和組織。一般認為細小等軸組織具有較好的塑性、熱穩定性和疲勞強度;針狀組織具有較高的持久強度、蠕變強度和斷裂韌性;等軸和針狀混合組織具有較好的綜合性能。
常用的熱處理方法有退火、固溶和時效處理。退火是為了消除內應力、提高塑性和組織穩定性,以獲得較好的綜合性能。通常α合金和(α+β)合金退火溫度選在(α+β)—→β相轉變點以下120~200℃;固溶和時效處理是從高溫區快冷,以得到馬氏體α′相和亞穩定的β相,然后在中溫區保溫使這些亞穩定相分解,得到α相或化合物等細小彌散的第二相質點,達到使合金強化的目的。通常(α+β)合金的淬火在(α+β)—→β相轉變點以下40~100℃進行,亞穩定β 合金淬火在(α+β)—→β相轉變點以上40~80℃進行。時效處理溫度一般為450~550℃。此外,為了滿足工件的特殊要求,工業上還采用雙重退火、等溫退火、β熱處理、形變熱處理等金屬熱處理工藝。
日標1號純鈦TP270鈦合金TP550薄板,鈦含量